Cancer Cell Study Carried Out At The University Of Bradford


A paper entitled “Plysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment” has been published by researchers at The University of Bradford and The University of Huddersfield. The study looks at Polysialic acid (a unique carbohydrate polymer expressed on the surface of neuronal cell adhesion molecules) and its association with tumour cell and adhesion in hypoxia. Their findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia.


A key part of the study involved the use of a Whitley H35 Hypoxystation. The importance of using a piece of equipment such as a Whitley Hypoxystation is down to hypoxia having a profound effect on cancer cell growth as it occurs in poorly vascularised areas of tumours. Klaus Pors, Senior Lecturer In Chemical Biology, provided the below quote.


Dr Robert Falconer and colleagues are studying polysialyl transferases (polySTs), responsible for the biosynthesis of polysialic acid (polySia), as a potential antimetastatic therapeutic strategy. PolySia is a unique carbohydrate polymer capable of modulating cell-cell and cell-matrix adhesion, migration, invasion and metastasis in a number of cancers. In this study we have employed Don Whitley H35 Hypoxystation to analyse how polySia sustains cancer cell survival and migratory capacity in a hypoxic environment. We believe these results contribute significantly to our understanding of how polySia supports an aggressive phenotype and further studies are underway to underpin these findings in a therapeutic context.


Furthermore, the paper also states that the “results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells”.


The group are set to continue this line of work, using the Whitley H35 Hypoxystation, keep an eye on the Meintrup DWS blog for more articles on this.

4. aW-Seminar in Herzlake

Bestimmen Sie bereits den aW-Wert Ihrer Produkte? Wenn nicht, sollten Sie damit anfangen, denn Wasseraktivität gewinnt in vielen Bereichen wie der Pharma-, Kosmetik-, Chemie- oder Lebensmittelindustrie immer mehr an Bedeutung. Durch die Messung des aW-Wertes können Rückrufaktionen verhindert werden, da die Qualität und somit die Haltbarkeit Ihrer Produkte verbessert wird.


Wir bieten auch in diesem Jahr wieder ein Seminar rund um das Thema Wasseraktivität an. Ob Sie den aW-Wert bereits messen oder nicht, ist für das Seminar völlig unerheblich. Durch Vorträge unserer Spezialisten werden Sie dem Thema näher gebracht und haben zudem die Möglichkeit, Erfahrungen mit anderen Teilnehmern austauschen. Zusätzlich können Sie uns gerne Ihre Produkte zur Messung des aW-Wertes mitbringen.


Das diesjährige Seminar findet am 25. Oktober in unserem neuen Gebäude in Herzlake statt. Die Veranstaltung startet um 9:30 Uhr mit einem kleinen Imbiss und wird voraussichtlich um 15:30 Uhr enden. Die Kosten für das Seminar betragen 195,00 € zzgl. MwSt. Ein Anmeldeformular für das Seminar finden Sie HIER! Anmeldeschluss ist der 7. Oktober 2016. Haben Sie Lust auf interessante und informative Gespräche mit Spezialisten und Kollegen? Dann senden Sie den Anmeldebogen per E-Mail an oder per Fax an +49 (0) 5962 87290-25!


Physiological Oxygen is Healthier for Cell Cultures

Physiological Oxygen is Healthier for Cell Cultures

Drs. Timpano and Uniacke, Hypoxystation users at University of Guelph in Ontario, have published a very thorough study examining the molecular basis of cells’ reactions to differing levels of hypoxia. In their paper “Human Cells Cultured Under Physiological Oxygen Utilize Two Cap-binding Proteins to Recruit Distinct mRNAs for Translation” (Journal of Biological Chemistry 291:20; 2016), they examine 2 different translation initiation proteins, eiF4E and eiF4E2, that are activated under either high (>8% O2) or low (<1% O2) oxygen levels, with the aid of mTORC1 or HIF-2α, respectively, and activated simultaneously in an area of low- to mid-level physioxia (1-8% O2). Timpano and Uniacke were able to stably and accurately create low oxygen in their Hypoxystation by Hypoxygen, which provides a closed workstation environment that enables researchers to culture and manipulate cells inside the chamber through gloveless sleeves, eliminating the negative consequences of spikes of higher oxygen and lower temperatures encountered in an incubator as cell cultures are growing. Their research into translational modulation of the proteome using the Hypoxystation gives seminal insights into physioxia as the natural condition for cells, both in vitro and in vivo.

“Culturing cells in ambient air could be far from physiological with respect to oxygen. Oxygen is a surprisingly neglected factor (in cell culture)” – Dr Timpano and Dr Uniacke, University of Guelph, Ontario, Canada

Through polysome association experiments with cells growing at ambient air versus lower oxygen levels of 1%, 3%, 5%, and 8%, RNA analysis, and m7-GTP cap-binding assays, Timpano and Uniacke were able to demonstrate that the oxygen concentration in the workstation was sufficient to either repress or increase the activity of eiF4E and eiF4E2, reflecting mechanisms that occur during development but also during tumor progression and in ischemic diseases. Cells can reversibly cycle between utilisation of the eiF4E protein, which preferentially binds to the 5′ TOP mRNA’s at >8% O2 and is impaired at hypoxia, and eiF4E2, which is active at <1% O2 and utilizes binding motifs in the 3′ UTR of the mRNA. The eIF4E type of mRNA’s code for housekeeping proteins while the eIF4E2-dependant mRNA’s encode signaling proteins needed to respond to environmental signals, allowing cells to control translation dynamically and giving cancer cells an edge during tumor progression, as hypoxia increases.


Read more